Predicting What We Breathe

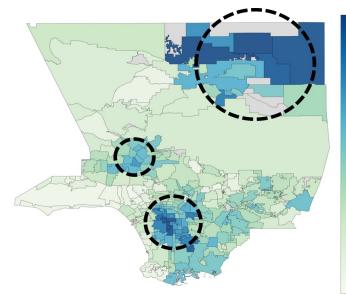
Jeanne Holm, Mohammad Pourhomayoun, Dawn Comer Kabir Nagrecha, Pratyush Muthukumar

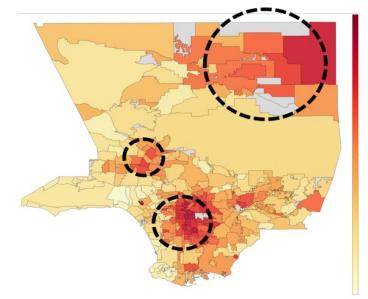
> City of Los Angeles Californiā State University Los Angeles Al Agora Open AQ

A a o f a l

Air Pollution

- Urban Air pollution is mostly a man-maid problem. It is responsible for the early deaths of 7 million people every year. It means that every 5 seconds, somebody around the world dies prematurely from the effects of air pollution.
- Unfortunately, the minority and low-income communities face higher exposure to air pollutants and experience greater health impacts.





UN Report 2019, UNICEF, <u>https://news.un.org/en/story/2019/06/1039661</u>
The American Lung Association, "Disparities in the Impact of Air Pollution"

Air Pollution

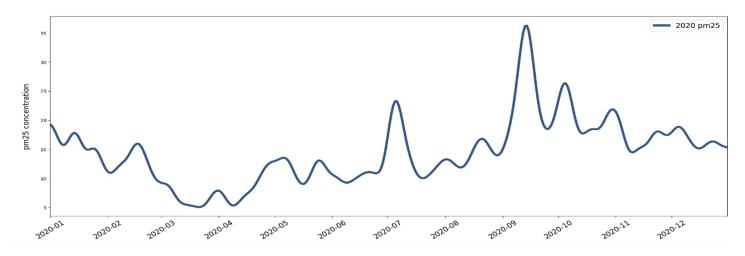
Our study on the people of California demonstrates that minority and low-income communities tend to be exposed to higher levels of air pollution and hit hardest by the adverse health consequences of air pollution

Right: Poverty Percentage By Neighborhood

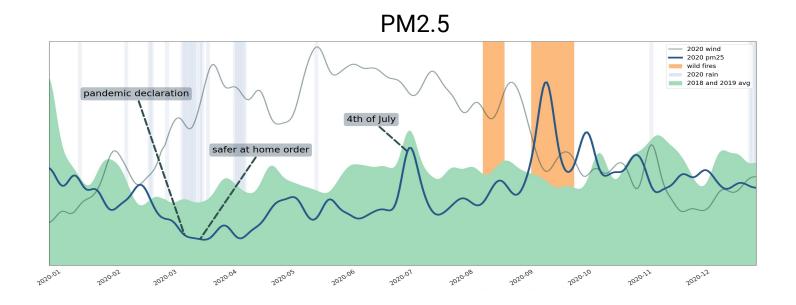
Left: Asthma Rate By Neighborhood

K. Marlis, J. West, D. Comer, I. Burga, J. Taub, C. F. Calvert, J. Holm, and M. Pourhomayoun, "A Comprehensive Analysis of Air Pollution and Equity During COVID-19 in Los Angeles County," The 17th International Conference on Data Science, ICDATA'21: July 26-29, 2021

Air Pollution


- The <u>first and the most important step</u> in mitigating the air pollution risks is to <u>understand the sources</u> of it, <u>discover the patterns</u>, and <u>predict</u> it in advance.
- By enhancing human understanding and prediction of air quality, local governments, health providers, and others can help mitigate the effects of air pollution.

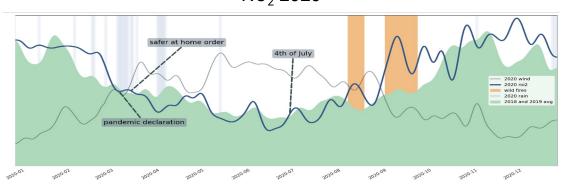
Air Pollution Prediction


Air pollution prediction is a complex problem!

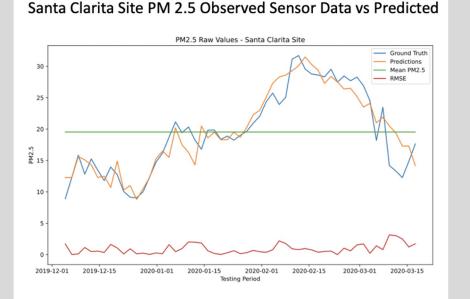
• Many factors are involved

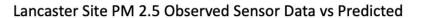
PM2.5

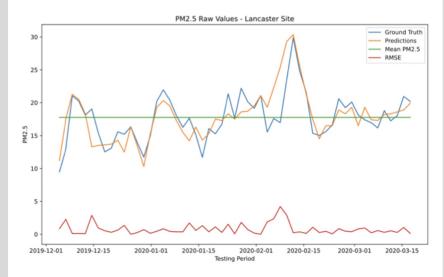
Air Pollution Prediction


Air Pollution Prediction

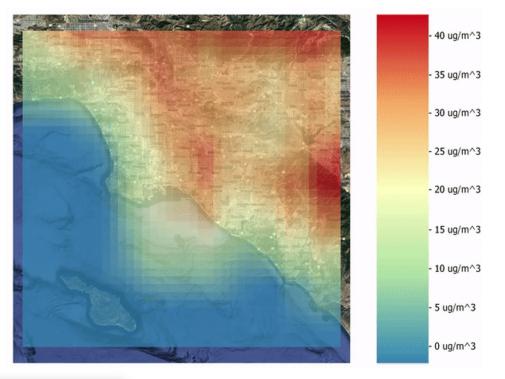
We need to:


- Take into account all factors that have impact on AQ or provide information
- Collect, process, and use data from many sources
- Have a complex machine learning model to discover, extract, and learn patterns


pandemic declaration pandemic declaration

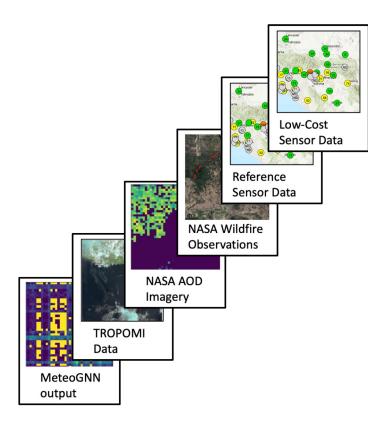

PM2.5 2020

Sample Prediction Results for PM2.5 Based on Satellite Images, Ground-based Sensors and Meteorological Data



AI-based Air Quality Prediction

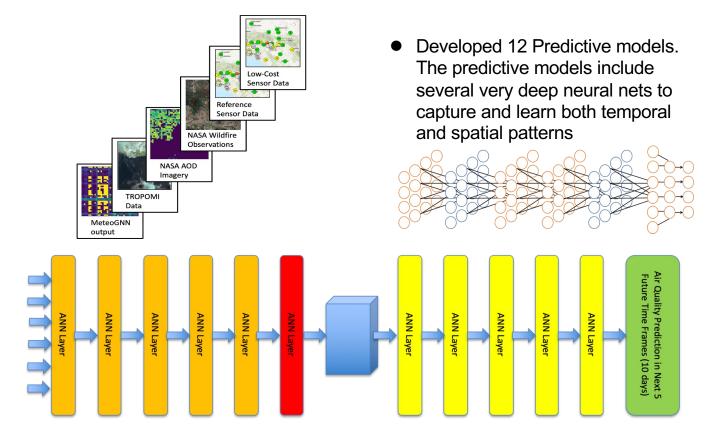
The average accuracy for 24hour prediction over all site locations in LA County is 94.56%.


12 predictive models

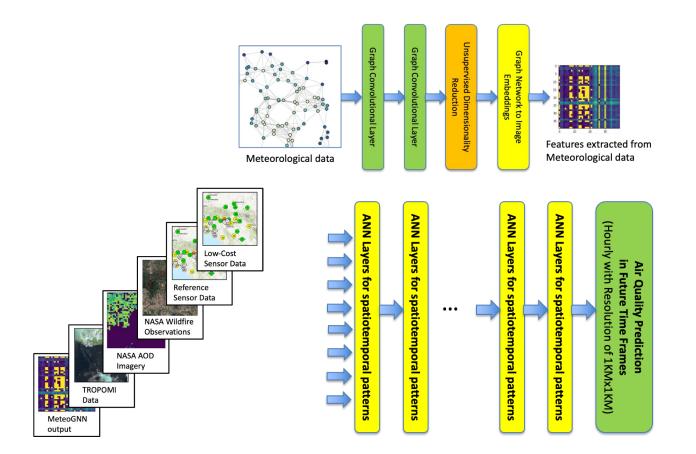
PM2.5, NO2, O3, CO, CO2, SO2

- Temporal Resolution: hourly prediction
- Spatial Resolution: 250 m²

Predictive Model and Data


Data

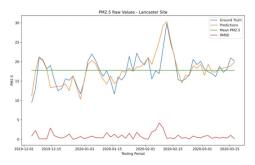
- NASA AOD Imagery
- ESA/NASA TROPOMI Data
- NASA Wildfire data: MISR, MODIS, FRP
- Reference Sensors
- Low Cost Sensors: 32 AQMD sensors and 48 PurpleAir community maintained sensors.
- Meteorological data


Data Processing and Data Fusion

- Preprocessing and cleansing
- Outliers/trustworthiness and missing values
- Feature extraction and knowledge discovery
- Feature selection and dimensionality Reduction
- Format matching and alignments

Deep Neural Networks for Predictive Models

Deep Neural Networks for Predictive Models



Predicting <u>PM2.5</u> Based on Satellite Observations, Ground Sensors, Meteorological Data, and Wildfire/Smoke Data

Santa Clarita Site PM 2.5 Observed Sensor Data vs Predicted

Lancaster Site PM 2.5 Observed Sensor Data vs Predicted

48-hour prediction Accuracy	Sensor Location
94%	Downtown LA
95%	Long Beach
91%	Lancaster
91%	Glendora
93%	Santa Clarita
93%	Reseda
95%	Long Beach – Rt 710

Predicting <u>PM2.5</u> Based on Satellite Observations, Ground Sensors, Meteorological Data, and Wildfire/Smoke Data

Input data

- Satellite observations NASA MODIS
- Ground-based sensors (13 in L.A. County), hourly
- Wildfire/Smoke data from NASA MODIS, MERRA-2
- Meteorological data

The average accuracy for 24-hour prediction over all site locations in LA County is 94.56%.

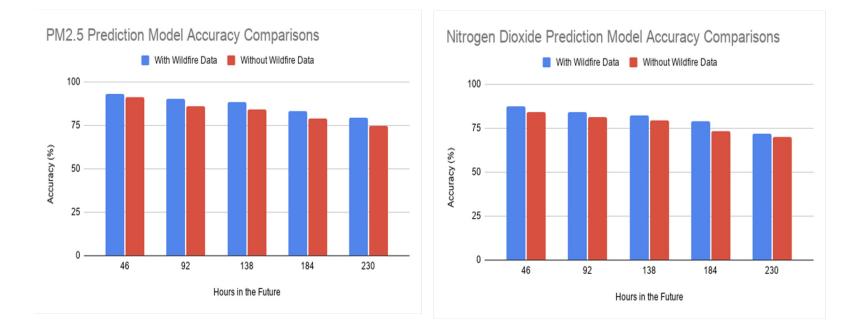
10-Day Prediction Accuracy	Days
93%	2 days in future
90%	4 days in future
88%	6 days in future
83%	8 days in future
80%	10 days in future

Predicting <u>Ozone</u> Based on Satellite Observations, Ground Sensors, Meteorological Data, and Wildfire/Smoke Data

48-hour prediction Accuracy	Sensor Location
93.53%	Downtown LA
95.90%	Long Beach
91.25%	Santa Clarita
88.19%	Reseda
86.23%	Lancaster
87.35%	Glendora
91.45%	Westchester
87.49%	Pico Rivera
90.04%	Compton
92.87%	Pasadena
93.10%	West LA
92.13%	Azusa
90.59%	Pomona

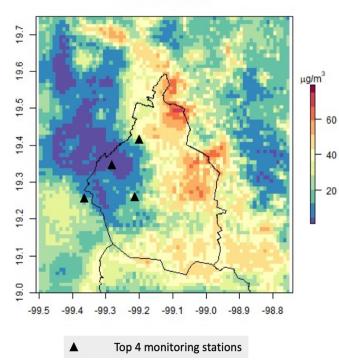
Accuracy	Frame #
91%	Frame 1: 2 days in future
89%	Frame 2: 4 days in future
86%	Frame 3: 6 days in future
84%	Frame 4: 8 days in future
80%	Frame 5: 10 days in future

- Satellite observations NASA MODIS
- Ground-based sensors (13 in L.A. County), hourly
- Wildfire/Smoke data from NASA MODIS, MERRA-2
- Meteorological data


Predicting <u>NO₂</u> Based on Satellite Observations, Ground Sensors, Meteorological Data, and Wildfire/Smoke Data

24-hour prediction Accuracy	Sensor Location
93%	Downtown LA
91%	Long Beach
91%	Santa Clarita
89%	Reseda
87%	Lancaster
88%	Glendora
91%	Westchester
91%	Pico Rivera
95%	Compton
92%	Pasadena
90%	West LA
92%	Azusa
92%	Pomona

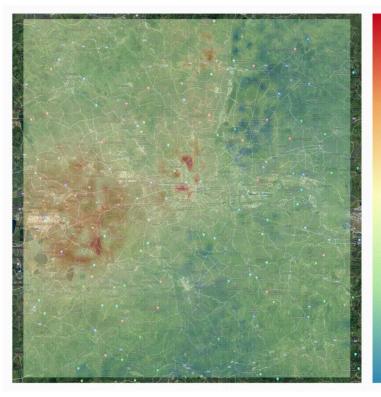
Accuracy	Frame #
87.62%	Frame 1: 2 days in future
84.15%	Frame 2: 4 days in future
82.38%	Frame 3: 6 days in future
79.06%	Frame 4: 8 days in future
72%	Frame 5: 10 days in future


- Satellite observations NASA MODIS
- Ground-based sensors (13 in L.A. County), hourly
- Wildfire/Smoke data from NASA MODIS, MERRA-2
- Meteorological data

Model Comparisons: Effect of Wildfire/Smoke Data

PWWB forecast in Mexico City for PM_{2.5}

2021-01-01 00:00



Prediction accuracy Nov 1 to Dec 31

Average Accuracy	Monitoring Station
94.87%	Santa Fe
94.72%	Ajusco Medio*
94.53%	Miguel Hidalgo*
94.51%	Investigaciones Nucleares
94.42%	Hospital General de México*
94.39%	Benito Juárez
94.34%	Tlalnepantla
94.19%	San Agustín
94.18%	Merced
94.17%	Gustavo A. Madero
93.95%	Ajusco
93.69%	Nezahualcóyotl
93.68%	Centro de Ciencias de la Atmósfera
93.56%	Xalostoc*
93.39%	UAM Xochimilco

London, U.K.

Hourly prediction

- 35 ug/m^3
- 30 ug/m^3
- 25 ug/m^3
- 20 ug/m^3
- 15 ug/m^3
- 10 ug/m^3
- 5 ug/m^3

- 0 ug/m^3

London Predicted PM2.5 Results

Predicted ground-level PM2.5 in 12 sensor locations in London hourly

Average Accuracy	Sensor Location
91.03%	London Teddington Bushy Park
91.14%	Kensington and Chelsea
91.04%	Sutton - Beddington Lane
89.61%	Camden - Bloomsbury
91.17%	City of London - Farringdon Street
90.90%	City of London - The Aldgate School
90.77%	Tower Hamlets - Blackwall
90.65%	Greenwich - Westhorne Avenue
91.03%	Greenwich - A206 Burrage Grove
90.92%	Greenwich - Plumstead High Street
90.98%	Greenwich - Falconwood FDMS
91.02%	Havering - Rainham

Durban, South Africa

Hourly prediction

- 35 ug/m^3
- 30 ug/m^3
- 25 ug/m^3
- 20 ug/m^3
- 15 ug/m^3
- 10 ug/m^3
- 5 ug/m^3
- 0 ug/m^3

Durban Predicted PM2.5 Results

Predicted ground-level PM2.5 in 4 sensor locations in Durban hourly

Average Accuracy	Sensor Location
94.54%	Settlers
94.53%	Wentworth
93.88%	Durban City Hall
95.61%	New Germany

Thank you!

More info: Mohammad Pourhomayoun <u>mpourho@calstatela.edu</u>

airquality.lacity.org www.ai-agora.com

